Abstract
AbstractCoral reefs are under threat from cumulative impacts such as cyclones, crown-of-thorns starfish (COTS) outbreaks and climate-driven coral bleaching events. Branching corals are more severely impacted by these events than other coral morphologies due to their sensitivity to heat stress and weaker skeletons and COTS preferred prey. The central Great Barrier Reef experienced unprecedented back-to-back bleaching events in 2016 and 2017. This study commenced in 2017 at the peak of heat stress and examined the impact of the heatwave on the survival and recovery of corals by assessing the growth, health (based on the visual health index) and physiological parameters (chlorophyll a, zooxanthellae density, lipid and protein content) of two species, Acropora millepora and Pocillopora acuta (N = 60 colonies for each species). It was conducted across a gradient of turbidity at three reefs, Pandora, Orpheus and Rib, that experienced in April 2017, degree heating weeks (DHW) of 9, 8 and 7, respectively. Orpheus experienced the worst bleaching, based on visual health score, followed by Rib and Pandora. Rib experienced the greatest mortality (78% by Nov 2017); however, this was attributed to the presence of actively feeding crown-of-thorns starfish. Growth rates of A. millepora were almost twice the rate of P. acuta. Both species showed significant seasonal variation with growth of A. millepora and P. acuta 35–40% and 23–33% significantly greater in the summer, respectively. Differences in growth rates were best explained by indicators of energy acquisition. For example, the most important predictor variable in determining higher growth rates and visual health score in A. millepora was chlorophyll a content. For P. acuta, visual health score was the best predictor variable for higher growth rates. This study highlights the important role that chlorophyll a and associated symbionts play in growth and survival in these corals during and after a heat stress event.
Funder
Centre of Excellence for Coral Reef Studies, Australian Research Council
Australian Institute of Marine Science
James Cook University
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. AIMS (Australian Institute of Marine Science) (2021) Long-term Reef Monitoring Program- Annual Summary Report on Coral Reef Condition for 2019/20. https://www.aims.gov.au/reef-monitoring/gbr-condition-summary-2019-2020. Accessed 23/3/2021
2. Ainsworth TD, Heron SF, Ortiz JC, Mumby PJ, Grech A, Ogawa D, Eakin CM, Leggat W (2016) Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352:338–342
3. Anderson KD, Cantin NE, Heron SF, Pisapia C, Pratchett MS (2017) Variation in growth rates of branching corals along Australia’s Great Barrier Reef. Scientific Reports 7:2920
4. Anthony K (2000) Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19:59–67
5. Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology 252:221–253
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献