Abstract
Abstract
The relationship between cnidarians and their micro-algal symbionts is crucial for normal animal function and the formation of coral reefs. We used the sea anemone Exaiptasia pallida (Aiptasia) as a model cnidarian–dinoflagellate system to determine the effects of white, blue and red light on photo-movement. In white light, phototropism and phototaxis of Aiptasia were dependent on the presence of symbionts; anemones with symbionts bent and moved toward the light, whereas aposymbiotic anemones (lacking algal symbionts) moved, but without strong directionality. Phototaxis and phototropism also occurred in blue light, but to a lesser extent than in white light, with no apparent response to red light. Phototactic behavior was also sensitive to the specific anemone–symbiont pairing. The ability to sense and move in response to light would presumably allow for selection of favorable habitats. Overall, this study demonstrates that the algal symbiont is required for photo-movement of the host and that the extent of movement is influenced by the different anemone–symbiont associations.
Funder
Carnegie Institution of Washington
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献