Author:
Santos Mónica P. S.,Hanak Dawid P.
Abstract
AbstractCarbon capture and storage will play a crucial role in industrial decarbonisation. However, the current literature presents a large variability in the techno-economic feasibility of CO2 capture technologies. Consequently, reliable pathways for carbon capture deployment in energy-intensive industries are still missing. This work provides a comprehensive review of the state-of-the-art CO2 capture technologies for decarbonisation of the iron and steel, cement, petroleum refining, and pulp and paper industries. Amine scrubbing was shown to be the least feasible option, resulting in the average avoided CO2 cost of between $$62.7\;\mathrm{C}\!\!\!\!{\scriptstyle{{}^=}\,} \cdot {\rm{t}}_{{\rm{C}}{{\rm{O}}_2}}^{\;\;\;\;\;\;\;\; - 1}$$ for the pulp and paper and $$104.6\;\mathrm{C}\!\!\!\!{\scriptstyle{{}^=}\,} \cdot {\rm{t}}_{{\rm{C}}{{\rm{O}}_2}}^{\;\;\;\;\;\;\;\; - 1}$$ for the iron and steel industry. Its average equivalent energy requirement varied between 2.7 (iron and steel) and $$5.1\;\;{\rm{M}}{{\rm{J}}_{{\rm{th}}}} \cdot {\rm{kg}}_{{\rm{C}}{{\rm{O}}_2}}^{\;\;\;\;\;\;\;\; - 1}$$ (cement). Retrofits of emerging calcium looping were shown to improve the overall viability of CO2 capture for industrial decarbonisation. Calcium looping was shown to result in the average avoided CO2 cost of between 32.7 (iron and steel) and $$42.9\;\mathrm{C}\!\!\!\!{\scriptstyle{{}^=}\,} \cdot {\rm{t}}_{{\rm{C}}{{\rm{O}}_2}}^{\;\;\;\;\;\;\;\; - 1}$$ (cement). Its average equivalent energy requirement varied between 2.0 (iron and steel) and $$3.7\;\;{\rm{M}}{{\rm{J}}_{{\rm{th}}}} \cdot {\rm{kg}}_{{\rm{C}}{{\rm{O}}_2}}^{\;\;\;\;\;\;\;\; - 1}$$ (pulp and paper). Such performance demonstrated the superiority of calcium looping for industrial decarbonisation. Further work should focus on standardising the techno-economic assessment of technologies for industrial decarbonisation.
Publisher
Springer Science and Business Media LLC
Subject
General Chemical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献