Author:
Ayed Cyrine,Huang Wei,Zhang Kai A. I.
Abstract
AbstractCovalent triazine frameworks (CTFs) have been recently employed for visible light-driven photocatalysis due to their unique optical and electronic properties. However, the usually highly hydrophobic nature of CTFs, which originates from their overall aromatic backbone, leads to limitations of CTFs for applications in aqueous media. In this study, we aim to extend the range of the application media of CTFs and design hybrid material of a CTF and mesoporous silica (SBA-15) for efficient photocatalysis in aqueous medium. A thiophene-containing CTF was directly synthesized in mesopores of SBA-15. Due to the high surface area and the added hydrophilic properties by silica, the hybrid material demonstrated excellent adsorption of organic molecules in water. This leads not only to high photocatalytic performance of the hybrid material for the degradation of organic dyes in water, but also for efficient photocatalysis in solvent-free and solid state. Furthermore, the reusability, stability and easy recovery of the hybrid material offers promising metal-free heterogeneous photocatalyst for broader applications in different reaction media.
Publisher
Springer Science and Business Media LLC
Subject
General Chemical Engineering
Reference28 articles.
1. Zhang Y, Jin S. Recent advancements in the synthesis of covalent triazine frameworks for energy and environmental applications. Polymers, 2018, 11(1): 31
2. Artz J. Covalent triazine-based frameworks—tailor-made catalysts and catalyst supports for molecular and nanoparticulate species. ChemCatChem, 2018, 10(8): 1753–1771
3. Liu M, Guo L, Jin S, Tan B. Covalent triazine frameworks: Synthesis and applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(10): 5153–5172
4. Zhu X, Tian C C, Mahurin S M, Chai S H, Wang C M, Brown S, Veith G M, Luo H M, Liu H L, Dai S. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. Journal of the American Chemical Society, 2012, 134(25): 10478–10484
5. Liebl M R, Senker J. Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chemistry of Materials, 2013, 25(6): 970–980
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献