A ROS-based distributed multi-robot localization and orientation strategy for heterogeneous robots

Author:

Alajami Abdussalam A.ORCID,Palau Nil,Lopez-Soriano Sergio,Pous Rafael

Abstract

AbstractThe problem of estimating and tracking the location and orientation of a mobile robot by another in heterogeneous distributed multi-robots is studied in this paper. We propose a distributed multi-robot localization strategy (DMLS) that is Robotic Operating System (ROS) based. It consists of an algorithm that fuses data of diverse sensors from 2 heterogeneous robots that are not connected within their transform trees to localize and measure the relative position and orientation.The method exploits the robust detection of the Convolutional Neural Networks (CNN) and the accurate relative position measurements from the local costmap. The algorithm is composed of two parts: The localization part and the relative orientation measurement part. Localization is done by optimization and alignment calibration of the CNN output with the costmap in an individual robot. The relative orientation measurement is done by a collaborative multi-robot fusing of diverse sensor data to align and synchronize the transform frames of both robots in their costmaps. To illustrate the performance of this strategy, the proposed method is compared with a conventional object localization and orientation measuring method that uses computer vision and QR codes. The results show that this proposed method is robust and accurate while maintaining a degree of simplicity and efficiency in costs. The paper also presents various application experiments in laboratory and simulation environments. By using the proposed method, distributed multi-robots collaborate to achieve collective intelligence from individuals, which increases team performance.

Funder

Universitat Pompeu Fabra

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Mechanical Engineering,Engineering (miscellaneous),Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Design of an RFID-Based Inventory Hybrid Robot for Large Warehouses;2024 9th International Conference on Control and Robotics Engineering (ICCRE);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3