Positron Emission Tomographic Imaging of Tumor Cell Death Using Zirconium-89-Labeled APOMAB® Following Cisplatin Chemotherapy in Lung and Ovarian Cancer Xenograft Models

Author:

Liapis VasiliosORCID,Tieu WilliamORCID,Wittwer Nicole L.ORCID,Gargett TessaORCID,Evdokiou AndreasORCID,Takhar Prab,Rudd Stacey E.ORCID,Donnelly Paul S.ORCID,Brown Michael P.ORCID,Staudacher Alexander H.ORCID

Abstract

Abstract Purpose Early detection of tumor treatment responses represents an unmet clinical need with no approved noninvasive methods. DAB4, or its chimeric derivative, chDAB4 (APOMAB®) is an antibody that targets the Lupus associated antigen (La/SSB). La/SSB is over-expressed in malignancy and selectively targeted by chDAB4 in cancer cells dying from DNA-damaging treatment. Therefore, chDAB4 is a unique diagnostic tool that detects dead cancer cells and thus could distinguish between treatment responsive and nonresponsive patients. Procedures In clinically relevant tumor models, mice bearing subcutaneous xenografts of human ovarian or lung cancer cell lines or intraperitoneal ovarian cancer xenografts were untreated or given chemotherapy followed 24h later by chDAB4 radiolabeled with [89Zr]ZrIV. Tumor responses were monitored using bioluminescence imaging and caliper measurements. [89Zr]Zr-chDAB4 uptake in tumor and normal tissues was measured using an Albira SI Positron-Emission Tomography (PET) imager and its biodistribution was measured using a Hidex gamma-counter. Results Tumor uptake of [89Zr]Zr-chDAB4 was detected in untreated mice, and uptake significantly increased in both human lung and ovarian tumors after chemotherapy, but not in normal tissues. Conclusion Given that tumors, rather than normal tissues, were targeted after chemotherapy, these results support the clinical development of chDAB4 as a radiodiagnostic imaging agent and as a potential predictive marker of treatment response.

Funder

National Health and Medical Research Council

Ray and Shirl Norman Cancer Research Trust

Royal Adelaide Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3