Assessing the quality of state-of-the-art regional climate information: the case of the UK Climate Projections 2018

Author:

Baldissera Pacchetti MarinaORCID,Dessai SurajeORCID,Stainforth David A.ORCID,Bradley SeamusORCID

Abstract

AbstractIn this paper, we assess the quality of state-of-the-art regional climate information intended to support climate adaptation decision-making. We use the UK Climate Projections 2018 as an example of such information. Their probabilistic, global, and regional land projections exemplify some of the key methodologies that are at the forefront of constructing regional climate information for decision support in adapting to a changing climate. We assess the quality of the evidence and the methodology used to support their statements about future regional climate along six quality dimensions: transparency; theory; independence, number, and comprehensiveness of evidence; and historical empirical adequacy. The assessment produced two major insights. First, a major issue that taints the quality of UKCP18 is the lack of transparency, which is particularly problematic since the information is directed towards non-expert users who would need to develop technical skills to evaluate the quality and epistemic reliability of this information. Second, the probabilistic projections are of lower quality than the global projections because the former lack both transparency and a theory underpinning the method used to produce quantified uncertainty estimates about future climate. The assessment also shows how different dimensions are satisfied depending on the evidence used, the methodology chosen to analyze the evidence, and the type of statements that are constructed in the different strands of UKCP18. This research highlights the importance of knowledge quality assessment of regional climate information that intends to support climate change adaptation decisions.

Funder

Centre for Climate Change Economics and Policy, University of Leeds

University of Leeds

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3