Components of arithmetic theory acceptance

Author:

Colclough Thomas M.ORCID

Abstract

AbstractThis paper ties together three threads of discussion about the following question: in accepting a system of axioms , what else are we thereby warranted in accepting, on the basis of accepting ? First, certain foundational positions in the philosophy of mathematics are said to be epistemically stable, in that there exists a coherent rationale for accepting a corresponding system of axioms of arithmetic, which does not entail or otherwise rationally oblige the foundationalist to accept statements beyond the logical consequences of those axioms. Second, epistemic stability is said to be incompatible with the implicit commitment thesis, according to which accepting a system of axioms implicitly commits the foundationalist to accept additional statements not immediately available in that theory. Third, epistemic stability stands in tension with the idea that in accepting a system of axioms , one thereby also accepts soundness principles for . We offer a framework for analysis of sets of implicit commitment which reconciles epistemic stability with the latter two notions, and argue that all three ideas are in fact compatible.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3