Social learning in models and minds

Author:

Yon DanielORCID,Heyes CeciliaORCID

Abstract

AbstractAfter more than a century in which social learning was blackboxed by evolutionary biologists, psychologists and economists, there is now a thriving industry in cognitive neuroscience producing computational models of learning from and about other agents. This is a hugely positive development. The tools of computational cognitive neuroscience are rigorous and precise. They have the potential to prise open the black box. However, we argue that, from the perspective of a scientific realist, these tools are not yet being applied in an optimal way. To fulfil their potential, the shiny new methods of cognitive neuroscience need to be better coordinated with old-fashioned, contrastive experimental designs. Inferences from model complexity to cognitive complexity, of the kind made by those who favour lean interpretations of behaviour (‘associationists’), require social learning to be tested in challenging task environments. Inferences from cognitive complexity to social specificity, made by those who favour rich interpretations (‘mentalists’), call for non-social control experiments. A parsimonious model that fits current data is a good start, but carefully designed experiments are needed to distinguish models that tell us how social learning could be done from those that tell us how it is really done.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3