Structural properties and adsorption of uranyl ions on the nanocomposite hydroxyapatite/white clay

Author:

Broda E.,Gładysz-Płaska A.,Skwarek E.,Payentko V. V.

Abstract

AbstractUranium is more and more extensively applied as a source of energy and can be potentially used for nuclear weapon production. Owing to that fact, the problem of uranium expansion in the environment is the object of research and draw attention many scientists. One of the most effective methods of uranium removal from the wastewater (where uranium is present in a low concentration and occurs mainly in the form of uranyl ion, UO22+) is the adsorbent usage. It is important to discover an adsorbent which will be effective, widely available and cheap. The paper discusses properties and the ability of U (VI) adsorption on a clay and nanocomposite clay/Hap (hydroxyapatite) obtained by wet method. The adsorbents were characterized by the mentioned below tests: XRD, XRF, the porosity (nitrogen adsorption–desorption method), zeta potential, surface charge density and sorption of U (VI). It was shown that nanocrystalline composites Hap/white clay can be appropriate adsorbent for removal of uranyl ions. The adsorption depends on the temperature and pH of the solution.

Funder

Narodowym Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3