Author:
Broda E.,Gładysz-Płaska A.,Skwarek E.,Payentko V. V.
Abstract
AbstractUranium is more and more extensively applied as a source of energy and can be potentially used for nuclear weapon production. Owing to that fact, the problem of uranium expansion in the environment is the object of research and draw attention many scientists. One of the most effective methods of uranium removal from the wastewater (where uranium is present in a low concentration and occurs mainly in the form of uranyl ion, UO22+) is the adsorbent usage. It is important to discover an adsorbent which will be effective, widely available and cheap. The paper discusses properties and the ability of U (VI) adsorption on a clay and nanocomposite clay/Hap (hydroxyapatite) obtained by wet method. The adsorbents were characterized by the mentioned below tests: XRD, XRF, the porosity (nitrogen adsorption–desorption method), zeta potential, surface charge density and sorption of U (VI). It was shown that nanocrystalline composites Hap/white clay can be appropriate adsorbent for removal of uranyl ions. The adsorption depends on the temperature and pH of the solution.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology
Reference22 articles.
1. Aly MM, Hamza MF (2013) A review: studies on uranium removal using different techniques. Overview J Disper Sci Tech 34(2):182–213
2. Bachmaf S, Merkel B (2011) Sorption of uranium (VI) at the clay mineral–water interface. Environ Earth Sci 63:925–934
3. Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64:93–112
4. Broda E, Skwarek E, Payentko VV, Gunko VM (2019) Synthesis and selected physicochemical properties of hydroxyapatite and white clay composite. Physicochem Probl Miner Process 55(6):1475–1483
5. Ersan M, Guler UA, Acikel U, Sarioglu M (2015) Synthesis of hydroxyapatite/clay and hydroxyapatite/pumice composites for tetracycline removal from aqueous solutions. Process Saf Environ Prot 96:22–32
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献