A technical characterization of APTs by leveraging public resources

Author:

González-Manzano Lorena,de Fuentes José M.,Lombardi Flavio,Ramos Cristina

Abstract

AbstractAdvanced persistent threats (APTs) have rocketed over the last years. Unfortunately, their technical characterization is incomplete—it is still unclear if they are advanced usages of regular malware or a different form of malware. This is key to develop an effective cyberdefense. To address this issue, in this paper we analyze the techniques and tactics at stake for both regular and APT-linked malware. To enable reproducibility, our approach leverages only publicly available datasets and analysis tools. Our study involves 11,651 regular malware and 4686 APT-linked ones. Results show that both sets are not only statistically different, but can be automatically classified with F1 > 0.8 in most cases. Indeed, 8 tactics reach F1 > 0.9. Beyond the differences in techniques and tactics, our analysis shows thats actors behind APTs exhibit higher technical competence than those from non-APT malwares.

Funder

Universidad Carlos III

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Safety, Risk, Reliability and Quality,Information Systems,Software

Reference54 articles.

1. Daly, M.K.: Advanced persistent threat. Usenix 4(4), 2013–2016 (2009)

2. Lake, J.: What is an advanced persistent threat (APT), with examples [Online] (2022). https://www.comparitech.com/blog/information-security/advanced-persistent-threat/. Last accessed May

3. Kaspersky. Advanced Persistent Threats in 2020: abuse of personal information and more sophisticated attacks are coming [Online]. https://www.kaspersky.com/about/press-releases/2019_advanced-persistent-threats-in-2020-abuse-of-personal-informationand-more-sophisticated-attacks-are-coming. Last accessed May 2022

4. Smiliotopoulos, C., Barmpatsalou, K., Kambourakis, G.: Revisiting the detection of lateral movement through Sysmon. Appl. Sci. 12(15), 7746 (2022)

5. Berady, A., Jaume, M., Tong, V.V.T., Guette, G.: From TTP to IoC: advanced persistent graphs for threat hunting. IEEE Trans. Netw. Serv. Manage. 18(2), 1321–1333 (2021)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3