DFTMicroagg: a dual-level anonymization algorithm for smart grid data

Author:

Adewole Kayode S.ORCID,Torra VicençORCID

Abstract

AbstractThe introduction of advanced metering infrastructure (AMI) smart meters has given rise to fine-grained electricity usage data at different levels of time granularity. AMI collects high-frequency daily energy consumption data that enables utility companies and data aggregators to perform a rich set of grid operations such as demand response, grid monitoring, load forecasting and many more. However, the privacy concerns associated with daily energy consumption data has been raised. Existing studies on data anonymization for smart grid data focused on the direct application of perturbation algorithms, such as microaggregation, to protect the privacy of consumers. In this paper, we empirically show that reliance on microaggregation alone is not sufficient to protect smart grid data. Therefore, we propose DFTMicroagg algorithm that provides a dual level of perturbation to improve privacy. The algorithm leverages the benefits of discrete Fourier transform (DFT) and microaggregation to provide additional layer of protection. We evaluated our algorithm on two publicly available smart grid datasets with millions of smart meters readings. Experimental results based on clustering analysis using k-Means, classification via k-nearest neighbor (kNN) algorithm and mean hourly energy consumption forecast using Seasonal Auto-Regressive Integrated Moving Average with eXogenous (SARIMAX) factors model further proved the applicability of the proposed method. Our approach provides utility companies with more flexibility to control the level of protection for their published energy data.

Funder

Knut och Alice Wallenbergs Stiftelse

Kempe Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Safety, Risk, Reliability and Quality,Information Systems,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3