Tidal variations in the high-latitude E- and F-region observed by EISCAT

Author:

Hocke Klemens

Abstract

Abstract. During the MLTCS (Mesosphere-Lower Thermosphere Coupling Study) campaign the EISCAT UHF radar was continuously operated over 7 days (30 July–5 August 1992) in the CP-1 mode. The long time series obtained of the fundamental ionospheric parameters field-aligned ion velocity (Vi), ion and electron temperature (T and Te), and electron density (Ne) are useful in investigating tidal variations in the E- and F-region since the geomagnetic activity was particularly low during the time of measurement. Maximum entropy spectra of the parameters were calculated for the relatively quiet interval from 1 August to 4 August 1992 and indicated dominant variations with harmonics of 24 hours. In the electron density spectrum especially, harmonics up to the sixth order (4-h period) are clearly visible. The phase and amplitude height profiles (100–450 km) of the diurnal, semidiurnal, and terdiurnal variations were determined by Fourier transform for a 24-h data set beginning at 12:00 UT on 3 August 1992 when the contaminating influences of electric fields were negligible. The tidal variations of the ion temperatures are compared with the corresponding variations of the neutral temperature predicted by the MSISE-90 model. A remarkable result is the dominance of terdiurnal temperature oscillations at E-region heights on 3–4 August 1992, while the measured diurnal and semidiurnal variations were negligible. The finding was confirmed by the analysis of further EISCAT data (2–3 August 1989, 2–3 July 1990, 31 March–1 April 1992) which also showed a dominant terdiurnal temperature tide in the E-region. This is different from numerous observations of tides in the E-region at mid-latitudes where the diurnal and especially the semidiurnal temperature oscillations were dominant.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3