Abstract
AbstractIn this article, we introduce generalized beta extension of Sz$$\acute{a}$$
a
´
sz-integral type operators and study their approximation properties. First, we calculate the some estimates for these operators. Further, we study the uniform convergence and order of approximation in terms of Korovkin-type theorem and modulus of continuity for the space of univariate continuous functions and bivariate continuous functions in their sections.. Moreover, numerical estimates and graphical representations for convergence of one- and two-dimensional sequences of operators are studied. In continuation, local and global approximation properties are studied in terms of the first- and second-order modulus of smoothness, Peetre’s K-functional and weight functions in various functional spaces.
Funder
The University of Newcastle
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献