Author:
Obłój Jan,Wiesel Johannes
Abstract
AbstractWe unify and establish equivalence between the pathwise and the quasi-sure approaches to robust modelling of financial markets in finite discrete time. In particular, we prove a fundamental theorem of asset pricing and a superhedging theorem which encompass the formulations of Bouchard and Nutz [12] and Burzoni et al. [13]. In bringing the two streams of literature together, we examine and compare their many different notions of arbitrage. We also clarify the relation between robust and classical ℙ-specific results. Furthermore, we prove when a superhedging property with respect to the set of martingale measures supported on a set $\Omega $
Ω
of paths may be extended to a pathwise superhedging on $\Omega $
Ω
without changing the superhedging price.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Finance,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献