Processing of molybdenum industrial waste into sustainable and efficient nanocatalysts for water electrolysis reactions

Author:

Ursino Federico,Mineo Giacometta,Scandurra Antonino,Scuderi Mario,Forestan Angelo,Alba Catya,Reitano Riccardo,Terrasi Antonio,Mirabella Salvo

Abstract

AbstractThe increasing need for sustainable energy and the transition from a linear to a circular economy pose great challenges to the materials science community. In this view, the chance of producing efficient nanocatalysts for water splitting using industrial waste as starting material is attractive. Here, we report low-cost processes to convert Mo-based industrial waste powder into efficient catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). pH controlled hydrothermal processing of Mo-based industrial waste powder leads to pure orthorhombic MoO3 nanobelts (50–200 nm wide, 10 µm long) with promising OER performances at 10 mA·cm−2 with an overpotential of 324 mV and Tafel slope of 45 mV·dec−1 in alkaline electrolyte. Indeed, MoS2/MoO3 nanostructures were obtained after sulfurization during hydrothermal processes of the MoO3 nanobelts. HER tests in acidic environment show a promising overpotential of 208 mV at 10 mA·cm−2 and a Tafel slope of 94 mV·dec−1. OER and HER performances of nanocatalysts obtained from Mo industrial waste powder are comparable or better than Mo-based nanocatalysts obtained from pure commercial Mo reagent. This work shows the great potential of reusing industrial waste for energy applications, opening a promising road to join waste management and efficient and sustainable nanocatalysts for water splitting.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3