Author:
Wang Lei,Wang Shu,Wang Xiaofeng,Zhang Jianming,Dong Jianjie,Wei Bin,Yang Haiguang,Wang Zhongchang,Zhang Ziyang,Guo ChuanFei,Liu Qian
Abstract
AbstractWhen a laser beam writes on a metallic film, it usually coarsens and deuniformizes grains because of Ostwald ripening, similar to the case of annealing. Here we show an anomalous refinement effect of metal grains: A metallic silver film with large grains melts and breaks into uniform, close-packed, and ultrafine (∼ 10 nm) grains by laser direct writing with a nanoscale laser spot size and nanosecond pulse that causes localized heating and adaptive shock-cooling. This method exhibits high controllability in both grain size and uniformity, which lies in a linear relationship between the film thickness (h) and grain size (D), D ∝ h. The linear relationship is significantly different from the classical spinodal dewetting theory obeying a nonlinear relationship (D ∝ h5/3) in common laser heating. We also demonstrate the application of such a silver film with a grain size of ∼ 10.9 nm as a surface-enhanced Raman scattering chip, exhibiting superhigh spatial-uniformity and low detection limit down to 10−15 M. This anomalous refinement effect is general and can be extended to many other metallic films.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献