Simulation-based evaluation of SAR and flip angle homogeneity for five transmit head arrays at 14 T

Author:

Harrevelt Seb D.ORCID,Roos Thomas H. M.,Klomp Dennis W. J.,Steensma Bart R.,Raaijmakers Alexander J. E.

Abstract

Abstract Introduction Various research sites are pursuing 14 T MRI systems. However, both local SAR and RF transmit field inhomogeneity will increase. The aim of this simulation study is to investigate the trade-offs between peak local SAR and flip angle uniformity for five transmit coil array designs at 14 T in comparison to 7 T. Methods Investigated coil array designs are: 8 dipole antennas (8D), 16 dipole antennas (16D), 8 loop coils (8D), 16 loop coils (16L), 8 dipoles/8 loop coils (8D8L) and for reference 8 dipoles at 7 T. Both RF shimming and kT-points were investigated by plotting L-curves of peak SAR levels vs flip angle homogeneity. Results For RF shimming, the 16L array performs best. For kT-points, superior flip angle homogeneity is achieved at the expense of more power deposition, and the dipole arrays outperform the loop coil arrays. Discussion and conclusion For most arrays and regular imaging, the constraint on head SAR is reached before constraints on peak local SAR are violated. Furthermore, the different drive vectors in kT-points alleviate strong peaks in local SAR. Flip angle inhomogeneity can be alleviated by kT-points at the expense of larger power deposition. For kT-points, the dipole arrays seem to outperform loop coil arrays.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling the mountains: what lies above 7 Tesla magnetic resonance?;Magnetic Resonance Materials in Physics, Biology and Medicine;2023-04-19

2. A vision of 14 T MR for fundamental and clinical science;Magnetic Resonance Materials in Physics, Biology and Medicine;2023-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3