Automated inversion time selection for black-blood late gadolinium enhancement cardiac imaging in clinical practice

Author:

Maillot Aurélien,Sridi Soumaya,Pineau Xavier,André-Billeau Amandine,Hosteins Stéphanie,Maes Jean-David,Montier Géraldine,Nuñez-Garcia Marta,Quesson Bruno,Sermesant Maxime,Cochet Hubert,Stuber Matthias,Bustin AurélienORCID

Abstract

Abstract Objective To simplify black-blood late gadolinium enhancement (BL-LGE) cardiac imaging in clinical practice using an image-based algorithm for automated inversion time (TI) selection. Materials and methods The algorithm selects from BL-LGE TI scout images, the TI corresponding to the image with the highest number of sub-threshold pixels within a region of interest (ROI) encompassing the blood-pool and myocardium. The threshold value corresponds to the most recurrent pixel intensity of all scout images within the ROI. ROI dimensions were optimized in 40 patients’ scans. The algorithm was validated retrospectively (80 patients) versus two experts and tested prospectively (5 patients) on a 1.5 T clinical scanner. Results Automated TI selection took ~ 40 ms per dataset (manual: ~ 17 s). Fleiss’ kappa coefficient for automated-manual, intra-observer and inter-observer agreements were $$\overline{\kappa }$$ κ ¯ = 0.73, $$\overline{\kappa }$$ κ ¯  = 0.70 and $$\overline{\kappa }$$ κ ¯  = 0.63, respectively. The agreement between the algorithm and any expert was better than the agreement between the two experts or between two selections of one expert. Discussion Thanks to its good performance and simplicity of implementation, the proposed algorithm is a good candidate for automated BL-LGE imaging in clinical practice.

Funder

Agence Nationale de la Recherche

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3