Simple diagnosis for layered structure using convolutional neural networks

Author:

Tajiri DaikiORCID,Hioki Tatsuru,Kawamura Shozo,Matsubara Masami

Abstract

AbstractIn this study, we propose a structural health monitoring and diagnostic method for layered (multi-story) structures using a convolutional neural network (CNN). The proposed method is a primary diagnostic one, and its purpose is to allow quick identification of the location of an abnormality after detecting it. An abnormality is defined as a decrease in the stiffness characteristics (spring constant) of the outer wall of a multi-story structure when it deteriorates or is damaged. The proposed method has the following features. A modal circle is generated by multiplying the frequency response functions (FRFs) simulated by a mathematical model and the FRFs from the actual structure, in frequency space, and then a CNN learns the features of the abnormality from the modal circle and diagnoses it in the actual multi-story structure. We first verified the validity of the proposed method by considering a three-story structure as a numerical example. When the method was applied to three types of abnormal conditions, it was shown that the abnormal diagnosis could be performed correctly. Next, we constructed an experimental model of a three-story structure, and realized three types of abnormal conditions similar to those in the numerical model. We verified the applicability of the proposed method and showed that correct diagnosis of an abnormality was possible. Both the validity and applicability of the proposed method were thus confirmed.

Funder

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3