Model order reduction for deformable porous materials in thin domains via asymptotic analysis

Author:

Armiti-Juber AlaaORCID,Ricken Tim

Abstract

AbstractWe study fluid-saturated porous materials that undergo poro-elastic deformations in thin domains. The mechanics in such materials are described using a biphasic model based on the theory of porous media (TPM) and consisting of a system of differential equations for material’s displacement and fluid’s pressure. These equations are in general strongly coupled and nonlinear, such that exact solutions are hard to obtain and numerical solutions are computationally expensive. This paper reduces the complexity of the biphasic model in thin domains with a scale separation between domain’s width and length. Based on standard asymptotic analysis, we derive a reduced model that combines two sub-models. Firstly, a limit model consists of averaged equations that describe the fluid pore pressure and displacement in the longitudinal direction of the domain. Secondly, a corrector model re-captures the mechanics in the transverse direction. The validity of the reduced model is finally tested using a set of numerical examples. These demonstrate the computational efficiency of the reduced model, while maintaining reliable solutions in comparison with original biphasic TPM model in thin domain.

Funder

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3