Lattice Boltzmann method for antiplane shear deformation: non-lattice-conforming boundary conditions

Author:

Schlüter AlexanderORCID,Müller Henning,Müller Ralf

Abstract

AbstractIn this work, two different approaches to treat boundary conditions in a lattice Boltzmann method (LBM) for the wave equation are presented. We interpret the wave equation as the governing equation of the displacement field of a solid under simplified deformation assumptions, but the algorithms are not limited to this interpretation. A feature of both algorithms is that the boundary does not need to conform with the discretization, i.e., the regular lattice. This allows for a larger flexibility regarding the geometries that can be handled by the LBM. The first algorithm aims at determining the missing distribution functions at boundary lattice points in such a way that a desired macroscopic boundary condition is fulfilled. The second algorithm is only available for Neumann-type boundary conditions and considers a balance of momentum for control volumes on the mesoscopic scale, i.e., at the scale of the lattice spacing. Numerical examples demonstrate that the new algorithms indeed improve the accuracy of the LBM compared to previous results and that they are able to model boundary conditions for complex geometries that do not conform with the lattice.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3