1. Döbel, I., Leis, M., Vogelsang, M., Neustrev, D., Petzka, H., Riemer, A., Rüping, S., Voss, A., Wegele, M., & Welz, J. (2018). Maschinelles Lernen – Eine Analyse zu Kompetenzen, Forschung und Anwendung. Fraunhofer-Gesellschaft. https://www.bigdata.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf.
2. Gotscharek & Company. (2020). KI-(Künstliche Intelligenz)-Projekte richtig aufsetzen. https://www.gotscharek-company.com/blog/ki-k%C3%BCnstliche-intelligenz-projekte-richtig-aufsetzen.
3. Mencke, N. (2021). ViRe-in2-GP-methodology for the use of virtual reality in large-scale industrial and infrastructural projects. Proceedings of the 4th IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR2021), Taichung, Taiwan (S. 124–128). https://doi.org/10.1109/AIVR52153.2021.00029.
4. Makovskaja, N. (2018). Classification of high vegetation in an urban environment: A performance comparison of machine learning methods in a LiDAR dataset. Master thesis, Aalborg University Copenhagen, https://projekter.aau.dk/projekter/files/280913725/Master_thesis_Nijole_Makovskaja_GIS.pdf.
5. Escamos, I. M. H., Roberto, A. R. C., Abucay, E. R., Inciong, G. K. L., Queliste, M. D., & Hermocilla, J. A. C. (2015). Comparison of different machine learning classifiers for building extraction in Lidar-derived datasets. In Proceedings of the 36th Asian conference on remote sensing: Fostering resilient growth in Asia (ACRS2015) (S. 1–10).