Abstract
AbstractWe construct a smooth Deligne–Mumford compactification for the moduli space of curves with an m-tuple of spin structures using line bundles on quasi-stable curves as limiting objects, as opposed to line bundles on stacky curves. For all m, we give a combinatorial description of the local structure of the corresponding coarse moduli spaces. We also classify all irreducible and connected components of the resulting moduli spaces of multiple-spin curves.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. Volume I (Grundlehren der Mathematischen Wissenschaften), vol. 267, p. xvi+386. Springer, New York (1985)
2. Arf, C.: Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I. J. Reine Angew. Math. 183, 148–167 (1941)
3. Artin, E.: Geometric Algebra (Wiley Classics Library), p. x+214. Wiley, New York (1988). Reprint of the 1957 original, A Wiley-Interscience Publication
4. Bruin, N., Sertöz, E.C.: Prym varieties of genus four curves. Trans. Am. Math. Soc. 373(1), 149–183 (2020)
5. Caporaso, L., Casagrande, C., Cornalba, M.: Moduli of roots of line bundles on curves. Trans. Am. Math. Soc. 359(8), 3733–3768 (2007)