Generation of realistic synthetic cable images to train deep learning segmentation models

Author:

MalvidoFresnillo Pablo,Mohammed Wael M.,Vasudevan Saigopal,PerezGarcia Jose A.,MartinezLastra Jose L.

Abstract

AbstractSemantic segmentation is one of the most important and studied problems in machine vision, which has been solved with high accuracy by many deep learning models. However, all these models present a significant drawback, they require large and diverse datasets to be trained. Gathering and annotating all these images manually would be extremely time-consuming, hence, numerous researchers have proposed approaches to facilitate or automate the process. Nevertheless, when the objects to be segmented are deformable, such as cables, the automation of this process becomes more challenging, as the dataset needs to represent their high diversity of shapes while keeping a high level of realism, and none of the existing solutions have been able to address it effectively. Therefore, this paper proposes a novel methodology to automatically generate highly realistic synthetic datasets of cables for training deep learning models in image segmentation tasks. This methodology utilizes Blender to create photo-realistic cable scenes and a Python pipeline to introduce random variations and natural deformations. To prove its performance, a dataset composed of 25000 synthetic cable images and their corresponding masks was generated and used to train six popular deep learning segmentation models. These models were then utilized to segment real cable images achieving outstanding results (over 70% IoU and 80% Dice coefficient for all the models). Both the methodology and the generated dataset are publicly available in the project’s repository.

Funder

H2020 Industrial Leadership

Tampere University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3