Impact of Storage Time on Characteristics of Synthetic Greywater for Two Different Pollutant Strengths to Be Treated or Recycled

Author:

Abed S. N.,Almuktar S. A.,Scholz M.ORCID

Abstract

AbstractStorage of greywater is controversial for environmental and health reasons. Artificial greywater was assessed after 2 and 7 days of storage time. Two different greywater pollutant strengths were statistically compared at each storage time. A negative significant (p < 0.05) correlation was evident with increasing storage time for the 5-day biochemical oxygen demand for more than 2 days. However, the concentrations of 5-day biochemical oxygen and chemical oxygen demands reduced significantly at 2 days of storage when compared with freshly prepared greywater. Biodegradability (5-day biochemical oxygen demand/chemical oxygen demand ratio) decreased significantly after storage to between 0.14 and 0.39. The nitrification process was improved significantly with increasing storage time concerning low strength greywater with a significant increase in the removal of ammonia-nitrogen and a non-significant decrease in the removal of nitrate-nitrogen. The correlation was significantly positive between ammonia-nitrogen and 5-day biochemical oxygen demand for stored greywater, while it was significantly negative between total suspended solids and both 5-day biochemical oxygen demand and dissolved oxygen. Significant reductions in colour, total suspended solids and turbidity were correlated positively with storage time. Precipitation of dissolved metals was suspected to occur in storing greywater by binding the inorganic components with the sediment and collide surfaces through adsorption, allowing a significant drop in concentrations of dissolved and undissolved metals with increasing storage time through sedimentation. Synthetic greywater of low mineral pollution had significantly higher removals for almost all concentrations compared with those for high concentrations. More advanced technologies for high trace element removal are required.

Funder

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Water Science and Technology,Ecological Modelling,Environmental Chemistry,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3