Biosafety evaluation of etoposide lipid nanomedicines in C. elegans

Author:

Moukhtari Souhaila H. El,Muñoz-Juan Amanda,Del Campo-Montoya Rubén,Laromaine Anna,Blanco-Prieto María J.ORCID

Abstract

AbstractNeuroblastoma is a pediatric tumor that originates during embryonic development and progresses into aggressive tumors, primarily affecting children under two years old. Many patients are diagnosed as high-risk and undergo chemotherapy, often leading to short- and long-term toxicities. Nanomedicine offers a promising solution to enhance drug efficacy and improve physical properties. In this study, lipid-based nanomedicines were developed with an average size of 140 nm, achieving a high encapsulation efficiency of over 90% for the anticancer drug etoposide. Then, cytotoxicity and apoptosis-inducing effects of these etoposide nanomedicines were assessed in vitro using human cell lines, both cancerous and non-cancerous. The results demonstrated that etoposide nanomedicines exhibited high toxicity and selectively induced apoptosis only in cancerous cells.Next, the biosafety of these nanomedicines in C. elegans, a model organism, was evaluated by measuring survival, body size, and the effect on dividing cells. The findings showed that the nanomedicines had a safer profile than the free etoposide in this model. Notably, nanomedicines exerted etoposide’s antiproliferative effect only in highly proliferative germline cells. Therefore, the developed nanomedicines hold promise as safe drug delivery systems for etoposide, potentially leading to an improved therapeutic index for neuroblastoma treatment. Graphical Abstract

Funder

Spanish Ministry of Science and Innovation

Universidad de Navarra

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correction: Biosafety evaluation of etoposide lipid nanomedicines in C. elegans;Drug Delivery and Translational Research;2024-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3