Functional characterization and transcriptional repression by Lacticaseibacillus paracasei DinJ-YafQ

Author:

Bonini Aleksandra Anna,Maggi Stefano,Mori Giulia,Carnuccio Dario,Delfino Danila,Cavazzini Davide,Ferrari Alberto,Levante Alessia,Yamaguchi Yoshihiro,Rivetti Claudio,Folli ClaudiaORCID

Abstract

Abstract DinJ-YafQ is a bacterial type II TA system formed by the toxin RNase YafQ and the antitoxin protein DinJ. The activity of YafQ and DinJ has been rigorously studied in Escherichia coli, but little has been reported about orthologous systems identified in different microorganisms. In this work, we report an in vitro and in vivo functional characterization of YafQ and DinJ identified in two different strains of Lacticaseibacillus paracasei and isolated as recombinant proteins. While DinJ is identical in both strains, the two YafQ orthologs differ only for the D72G substitution in the catalytic site. Both YafQ orthologs digest ribosomal RNA, albeit with different catalytic efficiencies, and their RNase activity is neutralized by DinJ. We further show that DinJ alone or in complex with YafQ can bind cooperatively to a 28-nt inverted repeat overlapping the −35 element of the TA operon promoter. Atomic force microscopy imaging of DinJ-YafQ in complex with DNA harboring the cognate site reveals the formation of different oligomeric states that prevent the binding of RNA polymerase to the promoter. A single amino acid substitution (R13A) within the RHH DNA-binding motif of DinJ is sufficient to abolish DinJ and DinJ-YafQ DNA binding in vitro. In vivo experiments confirm the negative regulation of the TA promoter by DinJ and DinJ-YafQ and unveil an unexpected high expression-related toxicity of the gfp reporter gene. A model for the binding of two YafQ-(DinJ)2-YafQ tetramers to the promoter inverted repeat showing the absence of protein-protein steric clash is also presented. Key points The RNase activity of L. paracasei YafQ toxin is neutralized by DinJ antitoxin. DinJ and DinJ-YafQ bind to an inverted repeat to repress their own promoter. The R13A mutation of DinJ abolishes DNA binding of both DinJ and DinJ-YafQ.

Funder

Ministero degli Affari Esteri e della Cooperazione Internazionale

Ministero dell’Istruzione, dell’Università e della Ricerca

Università degli Studi di Parma

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3