Bryophytes and the symbiotic microorganisms, the pioneers of vegetation restoration in karst rocky desertification areas in southwestern China

Author:

Cao Wei,Xiong Yuanxin,Zhao Degang,Tan Hongying,Qu JiaojiaoORCID

Abstract

AbstractIn karst rocky desertification areas, bryophytes coexist with algae, bacteria, and fungi on exposed calcareous rocks to form a bryophyte crust, which plays an irreplaceable role in the restoration of karst degraded ecosystems. We investigated the biodiversity of crust bryophytes in karst rocky desertification areas from Guizhou Province, China. A total of 145 species in 22 families and 56 genera were identified. According to frequency and coverage, seven candidate dominant mosses were screened out, and five drought-resistant indexes of them were measured. Hypnum leptothallum, Racopilum cuspidigerum, and Hyophila involuta have high drought adaptability. We explored the interactions between two dominant mosses (H. leptothallum, H. involuta) and the structure of microbial communities in three karst rocky desertification types. Microbial diversity and function analysis showed that both moss species and karst rocky desertification types affect microbial communities. Moss species much more strongly affected the diversity and changed the community composition of these microbial groups. Bacteria were more sensitive in the microbiome as their communities changed strongly between mosses and drought resistance factors. Moreover, several species of fungi and bacteria could be significantly associated with three drought-resistant indexes: Pro (free proline content), SOD (superoxide dismutase activity), and POD (peroxidase activity), which were closely related to the drought adaptability of mosses. Our results enforced the potential role of moss-associated microbes that are important components involved in the related biological processes when bryophytes adapted to arid habitats, or as one kind of promoters in the distribution pattern of early mosses succession in karst rocky desertification areas.

Funder

National Natural Science Foundation of China

2011 Collaboration Innovation Center Construction Program of Guizhou Province

High-level Innovation Talents Training Program of Guizhou Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3