Radionuclide metrology: confidence in radioactivity measurements

Author:

Pommé StefaanORCID

Abstract

AbstractRadionuclides, whether naturally occurring or artificially produced, are readily detected through their particle and photon emissions following nuclear decay. Radioanalytical techniques use the radiation as a looking glass into the composition of materials, thus providing valuable information to various scientific disciplines. Absolute quantification of the measurand often relies on accurate knowledge of nuclear decay data and detector calibrations traceable to the SI units. Behind the scenes of the radioanalytical world, there is a small community of radionuclide metrologists who provide the vital tools to convert detection rates into activity values. They perform highly accurate primary standardisations of activity to establish the SI-derived unit becquerel for the most relevant radionuclides, and demonstrate international equivalence of their standards through key comparisons. The trustworthiness of their metrological work crucially depends on painstaking scrutiny of their methods and the elaboration of comprehensive uncertainty budgets. Through meticulous methodology, rigorous data analysis, performance of reference measurements, technological innovation, education and training, and organisation of proficiency tests, they help the user community to achieve confidence in measurements for policy support, science, and trade. The author dedicates the George Hevesy Medal Award 2020 to the current and previous generations of radionuclide metrologists who have devoted their professional lives to this noble endeavour.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Spectroscopy,Pollution,Radiology, Nuclear Medicine and imaging,Nuclear Energy and Engineering,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3