Abstract
AbstractWe find growth estimates on functions and their Fourier transforms in the one-parameter Gelfand–Shilov spaces $$S_s$$
S
s
, $$S^\sigma $$
S
σ
, $$\Sigma _s$$
Σ
s
and $$\Sigma ^\sigma $$
Σ
σ
. We obtain characterizations for these spaces and their duals in terms of estimates of short-time Fourier transforms. We determine conditions on the symbols of Toeplitz operators under which the operators are continuous on the one-parameter spaces. Lastly, it is determined that $$\Sigma _s^\sigma $$
Σ
s
σ
is nontrivial if and only if $$s+\sigma > 1$$
s
+
σ
>
1
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis
Reference18 articles.
1. Cappiello, M.: Pseudo-differential operators and spaces of type S. In: Proceeding of 3rd International ISAAC Congr. Berl. Ger. 20 - 25 Aug. 2001, in Progress in analysis, vol. 1, pp. 681–688 (2003)
2. Cappiello, M.: Pseudodifferential parametrices of infinite order for SG-hyperbolic problems. Rend. Sem. Mat. Univ. Pol. Torino 61(4), 411–441 (2003)
3. Chung, J., Chung, S.-Y., Kim, D.: Characterizations of the Gelfand–Shilov spaces via Fourier transforms. Proc. Am. Math. Soc. 124(7), 2101–2108 (1996)
4. Debrouwere, A., Vindas, J.: A projective description of generalized Gelfand–Shilov spaces of Romieu type. In: Proceeding of the 11th ISAAC Cong., Växjö (Sweden) 2017 in Analysis, Probability, Applications, and Computation, in Trends in Mathematics, pp. 407-417 (2019)
5. Eijndhoven, S.: Functional analytic characterizations of the Gelfand–Shilov spaces $$S_\alpha ^\beta $$. Indag. Math. 89(2), 133–144 (1987)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献