Author:
Caragea Andrei,Lee Dae Gwan,Pfander Götz E.,Philipp Friedrich
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis
Reference14 articles.
1. Aldroubi, A., Sun, Q., Wang, H.: Uncertainty principles and Balian-Low type theorems in principal shift-invariant spaces. Appl. Comput. Harmon. Anal. 30, 337–347 (2011)
2. Balian, R.: Un principe d’incertitude fort en théorie du signal ou en mécanique quantique. C. R. Acad. Sci. Paris Sér. II 292, 1357–1362 (1981)
3. Benedetto, J.J., Heil, C., Walnut, D.F.: Differentiation and the Balian-Low theorem. J. Fourier Anal. Appl. 1, 355–402 (1995)
4. Cabrelli, C., Molter, U., Pfander, G.E.: Time-frequency shift invariance and the Amalgam Balian-Low theorem. Appl. Comput. Harmon. Anal. 41, 677–691 (2016)
5. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961–1005 (1990)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Balian–Low type theorem for Gabor Riesz sequences of arbitrary density;Mathematische Zeitschrift;2023-01-25
2. A quantitative subspace Balian-Low theorem;Applied and Computational Harmonic Analysis;2021-11
3. Uncertainty Principles for Fourier Multipliers;Journal of Fourier Analysis and Applications;2020-09-30
4. A quantitative Balian-Low theorem for subspaces;2019 13th International conference on Sampling Theory and Applications (SampTA);2019-07
5. Time-Frequency Shift Invariance of Gabor Spaces;2019 13th International conference on Sampling Theory and Applications (SampTA);2019-07