Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian

Author:

Feulefack Pierre AimeORCID,Jarohs SvenORCID,Weth TobiasORCID

Abstract

AbstractWe study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian$$(-\Delta )^s$$(-Δ)sin bounded open Lipschitz sets in the small order limit$$s \rightarrow 0^+$$s0+. While it is easy to see that all eigenvalues converge to 1 as$$s \rightarrow 0^+$$s0+, we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol$$2\log |\xi |$$2log|ξ|. By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that$$L^2$$L2-normalized Dirichlet eigenfunctions of$$(-\Delta )^s$$(-Δ)scorresponding to thek-th eigenvalue are uniformly bounded and converge to the set of$$L^2$$L2-normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.

Funder

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics,Analysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3