Visible light-driven removal of Rhodamine B using indium-doped zinc oxide prepared by sol–gel method

Author:

Benamara Majdi,Nassar Kais Iben,Essid Manel,Frick Stefanie,Rugmini R.,Sekhar K. C.,Silva José P. B.

Abstract

AbstractIndustrial dye contamination in wastewater poses significant environmental challenges, necessitating the development of efficient photocatalysts for degradation. In this work, we investigate the In doping effect in the photocatalytic activity of zinc oxide (ZnO) nanoparticles for effective RhB degradation. Indium-doped ZnO nanoparticles were synthesized via sol–gel method and x-ray diffraction (XRD) analysis revealed a wurtzite hexagonal structure, with the crystallite size being varying from 65 nm to 53 nm with the introduction of In content. XPS measurements on the 3% In-doped ZnO sample revealed distinct core level spectra for In 3d, Zn 2p, and O 1s regions, confirming the presence of indium, zinc, and oxygen. Brunauer–Emmett–Teller (BET) analysis revealed increased surface area and pore size, with specific surface areas escalating from 0.9 m²/g for pure ZnO to 10.1 m²/g for 3% indium-doped ZnO. Photocatalytic experiments exhibited significant RhB degradation, with degradation efficiencies reaching 93% for 3% indium-doped ZnO under visible light irradiation due to the effect of the presence of In, which causing light absorption enhancement, narrow the band gap and improve charge carrier separation. These findings underscore the potential of indium-doped ZnO nanoparticles as efficient and sustainable photocatalysts for wastewater treatment, offering a promising avenue to address environmental challenges associated with industrial dye-contaminated effluents. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3