Fabrication of sol-gel derived homogeneously doped Er3+/Yb3+:SiO2 microspheres using laser melting

Author:

Chen Jie,Ma Jianxing,Black Charles M.,Shao Yuchen,Lei Jincheng,Xiao Hai,Peng Fei

Abstract

AbstractSilica microspheres have been demonstrated as the optical micro-cavity for laser generation based on whispering-gallery modes (WGM). They can achieve a high-quality factor (Q) within a tiny volume. Traditionally, complex processes are needed to process a coating containing photoluminescent elements, with enough thickness and uniformity, for laser generation. We developed a novel sol-gel fabrication method of Er3+/Yb3+doped silica microspheres with a homogeneous doping concentration over the entire microsphere volume. The sol-gel precursors were doped with 1–2 mol% Er3+ and/or Yb3+. The viscosity of the precursor was controlled at around 4000 cP, and gel fibers can be conveniently drawn from the precursor. After firing at 1000 °C for 1 h, transparent fibers with diameters of 40–180 µm were obtained. The fiber tips were quickly melted into microspheres using a CO2 laser. The diameters of microspheres were determined by the fiber diameter and laser parameters, such as laser power and irradiation time duration. Typically, the microspheres had diameters between 90 to 160 µm. The emission spectrum under 357 nm and 527 nm excitation showed characteristic Er3+ emission peaks, that match the literature well. The UV-VIS spectra confirm the photoluminescence results and showed both Er3+ and Yb3+ characteristic absorptions. The optical behaviors of the microspheres indicate that the Er3+ and Yb3+ were well dispersed in the silica matrix and the microspheres had typical optical activities of Er3+/Yb3+ glasses. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3