Ultra-fast Surrogate Model for Magnetic Field Computation of a Superconducting Magnet Using Multi-layer Artificial Neural Networks

Author:

Yazdani-Asrami MohammadORCID,Sadeghi AlirezaORCID,Song WenjuanORCID

Abstract

AbstractDue to the inherent nonlinear and sophisticated nature of superconducting wires/tapes, magnetic field computation of superconducting magnets by means of finite element methods (FEMs) is a time-consuming and complicated procedure. Although Legendre series method (LSM) was proposed as an alternative of FEMs, LSMs are not still fast enough. In current research, a surrogate model based on multi-layer artificial neural networks (ANNs) was introduced for the first time to dramatically reduce the computation time of a magnetic resonance imaging (MRI) magnet. To do this, firstly, the data related to the magnetic field were extracted based on LSM simulations for around 5000 different coil geometries. After that, the geometries of coils were used as inputs to a semi-deep learning ANN-based model in MATLAB software package. The minimum magnetic field in diameter spherical volume, maximum and minimum of total magnetic field were considered as outputs of the model, known as field indices. Then, ANN model was trained to calculate these field indices for any coil geometry. By doing so, magnetic field indices were estimated with a high accuracy based on the target values and also with extremely higher speed, comparing to FEM and LSM. Results showed that it takes 15 to 17 s for the proposed model to calculate the field indices for 750 different geometries whereas it takes for LSM-based model about 4 h.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3