A Fully-Automatic Segmentation of the Carpal Tunnel from Magnetic Resonance Images Based on the Convolutional Neural Network-Based Approach

Author:

Yang Tai-Hua,Yang Cheng-Wei,Sun Yung-Nien,Horng Ming-HuwiORCID

Abstract

Abstract Purpose Carpal tunnel syndrome is one of the common peripheral neuropathies. For magnetic resonance imaging, segmentation of the carpal tunnel and its contents, including flexor tendons and the median nerve for magnetic resonance images is an important issue. In this study, a convolutional neural network (CNN) model, which was modified by the original DeepLabv3 + model to segment three primary structures of the carpal tunnel: the carpal tunnel, flexor tendon, and median nerve. Methods To extract important feature maps for segmentation of the carpal tunnel, flexor tendon, and median nerve, the proposed CNN model termed modified DeepLabv3 + uses DenseNet-121 as a backbone and adds dilated convolution to the original spatial pyramid pooling module. A MaskTrack method was used to refine the segmented results generated by modified DeepLabv3 + , which have a small and blurred appearance. For evaluation of the segmentation results, the average Dice similarity coefficients (ADSC) were used as the performance index. Results Sixteen MR images corresponding to different subjects were obtained from the National Cheng Kung University Hospital. Our proposed modified DeepLabv3 + generated the following ADSCs: 0.928 for carpal tunnel, 0.872 for flexor tendons and 0.785 for the median nerve. The ADSC value of 0.8053 generated the MaskTrack that 0.22 ADSC measure were improved for measuring the median nerve. Conclusions The experimental results showed that the proposed modified DeepLabv3 + model can promote segmentations of the carpal tunnel and its contents. The results are superior to the results generated by original DeepLabv3 + . Additionally, MaskTrack can also effectively refine median nerve segmentations.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. One-Stop Automated Diagnostic System for Carpal Tunnel Syndrome in Ultrasound Images Using Deep Learning;Ultrasound in Medicine & Biology;2024-02

2. Terraced field extraction in UAV imagery using improved DeepLabv3+ network;2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP);2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3