Optimizing MR imaging for intraoperative image guidance in sellar pathologies

Author:

Micko Alexander,Hosmann Arthur,Marik Wolfgang,Bartsch Sophie,Weber Michael,Knosp Engelbert,Wolfsberger Stefan

Abstract

Abstract Purpose With the advancement of extended endonasal approaches, the ability to surgically reach parasellar tumor extensions increase. The aim of the study was to propose an optimized imaging protocol for surgical guidance in the cavernous sinus (CS) for proper visualization structures at risk. Methods Prospective case control analysis of 20 consecutive pituitary adenoma patients scheduled for endoscopic transnasal surgery. Assessment of the capability of three different MRI sequences (MPRAGE, VIBE, CISS) by 4 investigators to correctly visualize sellar and parasellar structures. Invasiveness and position of the normal pituitary gland were compared with the intraoperative findings. Results The consensus between the 4 examiners to achieve the same results for all modalities was 40% for MPRAGE, 70% for VIBE and 60% for CISS sequences (p = 0.155). A consensus of Knosp Grade per patient was 80% for MPRAGE, 100% for VIBE and 90% for CISS (overall kappa 0.60). A higher Knosp Grade was found in MPRAGE sequences compared to the other sequences. Intraoperative status of invasiveness was correctly identified in 12/20 (60%) with MPRAGE, 19/20 (95%) with VIBE and 11/20 (55%) with CISS sequences. The position of the normal pituitary gland was most frequent evaluable in 15/20 (75%) and correctly identified in 12/15 (80%) cases. Conclusion Our data showed that VIBE sequences obtain the highest degree of consensus with intraoperative findings of invasiveness and position of the normal pituitary gland. VIBE sequences, due to their high spatial resolution and at the same time fast image acquisition could provide improved imaging for neuronavigation.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Reference39 articles.

1. Fahlbusch R, Buchfelder M (1988) Transsphenoidal surgery of parasellar pituitary adenomas. Acta Neurochir (Wien) 92(1–4):93–99

2. Trouillas J, Roy P, Sturm N, Dantony E, Cortet-Rudelli C, Viennet G, Bonneville JF, Assaker R, Auger C, Brue T, Cornelius A, Dufour H, Jouanneau E, Francois P, Galland F, Mougel F, Chapuis F, Villeneuve L, Maurage CA, Figarella-Branger D, Raverot G, members of, Barlier H, Bernier A, Bonnet M, Borson-Chazot F, Brassier F, Caulet-Maugendre G, Chabre S, Chanson O, Cottier P, Delemer JF, Delgrange B, Di Tommaso E, Eimer L, Gaillard S, Jan S, Girard M, Lapras JJ, Loiseau V, Passagia H, Patey JG, Penfornis M, Poirier A, Perrin JY, Tabarin GA (2013) A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 126(1), 123–135. https://doi.org/10.1007/s00401-013-1084-y

3. Vieira JO Jr, Cukiert A, Liberman B (2006) Evaluation of magnetic resonance imaging criteria for cavernous sinus invasion in patients with pituitary adenomas: logistic regression analysis and correlation with surgical findings. Surg Neurol 65(2):130–135. https://doi.org/10.1016/j.surneu.2005.05.021 (discussion 135)

4. Kitano M, Taneda M, Shimono T, Nakao Y (2008) Extended transsphenoidal approach for surgical management of pituitary adenomas invading the cavernous sinus. J Neurosurg 108(1):26–36. https://doi.org/10.3171/JNS/2008/108/01/0026

5. Micko AS, Wohrer A, Wolfsberger S, Knosp E (2015) Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg 122(4):803–811. https://doi.org/10.3171/2014.12.JNS141083

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3