Abstract
AbstractThis paper is devoted to the analysis of the finite-dimensional distributions and asymptotic behavior of extremal Markov processes connected with the Kendall convolution. In particular, we provide general formulas for the finite dimensional distributions of the random walk driven by the Kendall convolution for a large class of step size distributions. Moreover, we prove limit theorems for random walks and associated continuous-time stochastic processes.
Funder
Fundacja na rzecz Nauki Polskiej
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference39 articles.
1. Alpuim, M.T., Catkan, N.A., Hüsler, J.: Extremes and clustering of non-stationary max-AR(1) sequences. Stoch. Proc. Appl. 56, 171–184 (1995)
2. Andersen, T.G., Davis, R.A., Kreiß, J., Mikosch, T.V. (eds.): Handbook of Financial Time Series. Springer-Verlag, Berlin Heidelberg (2009)
3. Arendarczyk, M., Kozubowski, T.J., Panorska, A.K.: Slash distributions, generalized convolutions, and extremes. Ann. Inst. Stat. Math. 75, 593–617 (2023)
4. Arnold, B.C.: Pareto processes. In: Stochastic Processes: Theory and Methods. Handbook of Statistics, vol. 19. pp. 1–33 (2001)
5. Arnold, B.C.: Pareto Distributions. In: Monographs on Statistics and Applied Probability, vol. 140. Taylor & Francis Group (2015)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献