Towards a systematic study of non-thermal leptogenesis from inflaton decays

Author:

Zhang XinyiORCID

Abstract

Abstract This paper investigates non-thermal leptogenesis from inflaton decays in the minimal extension of the canonical type-I seesaw model, where a complex singlet scalar ϕ is introduced to generate the Majorana masses of right-handed neutrinos (RHNs) and to play the role of inflaton. First, we systematically study non-thermal leptogenesis with the least model dependence. We give a general classification of the parameter space and find four characteristic limits by carefully examining the interplay between inflaton decay into RHNs and the decay of RHNs into the standard-model particles. Three of the four limits are truly non-thermal, with a final efficiency larger than that of thermal leptogenesis. Two analytic estimates for these three limits are provided with working conditions to examine the validity. In particular, we find that the strongly non-thermal RHNs scenario occupies a large parameter space, including the oscillation-preferred K range, and works well for a relatively-low reheating temperature TRH ≥ 103 GeV, extending the lower bound on the RHN mass to 2 × 107 GeV. The lepton flavor effects are discussed. Second, we demonstrate that such a unified picture for inflation, neutrino masses, and baryon number asymmetry can be realized by either a Coleman-Weinberg potential (for the real part of ϕ) or a natural inflation potential (for the imaginary part of ϕ). The allowed parameter ranges for successful inflation and non-thermal leptogenesis are much more constrained than those without inflationary observations. We find that non-thermal leptogenesis from inflaton decay offers a testable framework for the early Universe. It can be further tested with upcoming cosmological and neutrino data. The model-independent investigation of non-thermal leptogenesis should be useful in exploring this direction.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3