Cosmic string and brane induced effects on the fermionic vacuum in AdS spacetime

Author:

Bellucci S.,Oliveira dos Santos W.,Bezerra de Mello E. R.ORCID,Saharian A. A.

Abstract

Abstract We investigate the combined effects of a magnetic flux-carrying cosmic string and a brane on the fermionic condensate (FC) and on the vacuum expectation value (VEV) of the energy-momentum tensor for a massive charged fermionic field in background of 5-dimensional anti-de Sitter (AdS) spacetime. The brane is parallel to the AdS boundary and it divides the space into two regions with distinct properties of the fermionic vacuum. For two types of boundary conditions on the field operator and for the fields realizing two inequivalent representations of the Clifford algebra, the brane-induced contributions in VEVs are explicitly separated. The VEVs are even periodic functions of the magnetic flux, confined in the core, with the period of flux quantum. Near the horizon the FC and the vacuum energy-momentum tensor are dominated by the brane-free contribution, whereas the brane-induced part dominates in the region near the brane. Both the contributions vanish on the AdS boundary. At large distances from the cosmic string, the topological contributions in the VEVs, as functions of the proper distance, exhibit an inverse power-law decrease in the region between the brane and AdS horizon and an exponential decrease in the region between the brane and AdS boundary. We show that the FC and the vacuum energy density can be either positive or negative, depending on the distance from the brane. Applications are discussed in fermionic models invariant under the charge conjugation and parity transformation and also in Z2-symmetric braneworld models. By the limiting transition we derive the expressions of the FC and the vacuum energy-momentum tensor for a cosmic string on 5-dimensional Minkowski bulk in the presence of a boundary perpendicular to the string.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3