Cyclic products of Szegö kernels and spin structure sums. Part I. Hyper-elliptic formulation

Author:

D’Hoker Eric,Hidding Martijn,Schlotterer OliverORCID

Abstract

Abstract The summation over spin structures, which is required to implement the GSO projection in the RNS formulation of superstring theories, often presents a significant impediment to the explicit evaluation of superstring amplitudes. In this paper we discover that, for Riemann surfaces of genus two and even spin structures, a collection of novel identities leads to a dramatic simplification of the spin structure sum. Explicit formulas for an arbitrary number of vertex points are obtained in two steps. First, we show that the spin structure dependence of a cyclic product of Szegö kernels (i.e. Dirac propagators for worldsheet fermions) may be reduced to the spin structure dependence of the four-point function. Of particular importance are certain trilinear relations that we shall define and prove. In a second step, the known expressions for the genus-two even spin structure measure are used to perform the remaining spin structure sums. The dependence of the spin summand on the vertex points is reduced to simple building blocks that can already be identified from the two-point function. The hyper-elliptic formulation of genus-two Riemann surfaces is used to derive these results, and its SL(2, ℂ) covariance is employed to organize the calculations and the structure of the final formulas. The translation of these results into the language of Riemann ϑ-functions, and applications to the evaluation of higher-point string amplitudes, are relegated to subsequent companion papers.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3