Abstract
Abstract
We study causality in gravitational systems beyond the classical limit. Using on-shell methods, we consider the 1-loop corrections from charged particles to the photon energy-momentum tensor — the self-stress — that controls the quantum interaction between two on-shell photons and one off-shell graviton. The self-stress determines in turn the phase shift and time delay in the scattering of photons against a spectator particle of any spin in the eikonal regime. We show that the sign of the β-function associated to the running gauge coupling is related to the sign of time delay at small impact parameter. Our results show that, at first post-Minkowskian order, asymptotic causality, where the time delay experienced by any particle must be positive, is respected quantum mechanically. Contrasted with asymptotic causality, we explore a local notion of causality, where the time delay is longer than the one of gravitons, which is seemingly violated by quantum effects.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献