Author:
Naya Carlos,Sutcliffe Paul
Abstract
Abstract
A problem with the standard Skyrme model is that Skyrmion binding energies are around 15%, being much larger than the order 1% binding energies of the nuclei that they aim to describe. Here we consider theories that extend the standard Skyrme model of pions by including rho mesons, via dimensional deconstruction of Yang-Mills theory with an extra dimension. We report the first results of parallel numerical computations of multi-Skyrmions in theories of this type, including a model that reduces Skyrmion energies below those of the standard Skyrme model whilst retaining exactly the same Faddeev-Bogomolny energy bound. We compute all Skyrmions with baryons numbers up to 12 and find that the inclusion of rho mesons reduces binding energies to less than 4%, and therefore moves Skyrmion theory closer to experimental data. Furthermore, we find that this dramatic reduction in binding energies is obtained without changing the qualitative features of the Skyrmions, such as their symmetries.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献