Black holes, white holes, and near-horizon physics

Author:

Gaur Rudeep,Visser MattORCID

Abstract

Abstract Black and white holes play remarkably contrasting roles in general relativity versus observational astrophysics. While there is observational evidence for the existence of compact objects that are “cold, dark, and heavy”, which thereby are natural candidates for black holes, the theoretically viable time-reversed variants — the “white holes” — have nowhere near the same level of observational support. Herein we shall explore the theoretical possibility that the connection between black and white holes is much more intimate than commonly appreciated. We shall first construct “horizon penetrating” coordinate systems that differ from the standard curvature coordinates only in a small near-horizon region, thereby emphasizing that ultimately the distinction between black and white horizons depends only on near-horizon physics. We shall then construct an explicit model for a “black-to-white transition” where all of the nontrivial physics is confined to a compact region of spacetime — a finite-duration finite-thickness, (in principle arbitrarily small), region straddling the naïve horizon. Moreover we shall show that it is possible to arrange the “black-to-white transition” to have zero action — so that it will not be subject to destructive interference in the Feynman path integral. This then raises the very intriguing possibility that astrophysical black holes might be interpretable in terms of a quantum superposition of black and white horizons — a “gray” horizon.

Publisher

Springer Science and Business Media LLC

Reference124 articles.

1. S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, Wiley, Hoboken, NJ, U.S.A. (1972) [INSPIRE].

2. C. Misner, K. Thorne and J.A. Wheeler, Gravitation, Freeman, San Francisco, CA, U.S.A. (1973) [INSPIRE].

3. R.J. Adler, M. Bazin and M. Schiffer, Introduction to general relativity, second edition, McGraw-Hill, New York, NY, U.S.A. (1975).

4. R.M. Wald, General relativity, Chicago University Press, Chicago, IL, U.S.A. (1984) [https://doi.org/10.7208/chicago/9780226870373.001.0001] [INSPIRE].

5. R. d’Inverno, Introducing Einstein’s relativity, Oxford University Press, Oxford, U.K. (1992) [INSPIRE].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3