Effects of nutrient availability and light intensity on the sterol content of Saccharina latissima (Laminariales, Phaeophyceae)

Author:

de Jong Dylan L. C.ORCID,Timmermans Klaas R.,de Winter José M.,Derksen Goverdina C. H.ORCID

Abstract

AbstractSeaweed phytosterols are associated with potential health benefits, affording them and the seaweeds that produce them commercial interest. However, little is known about how their production is affected by the cultivation environment, limiting the efficiency with which these compounds can be exploited. Therefore, we performed a pilot study on the effect of nutrient availability and light stress on the sterol content of Saccharina latissima, a rapid growing brown alga of increasing interest in western mariculture. Individuals of S. latissima were subjected to a nutrient-replete and nutrient-depleted regime for 5 weeks, followed by the introduction of light-limited and light-saturated conditions in the sixth week; sampling occurred each week. No significant inter-treatment differences were found in the sterol content in week 1–5. However, significant intra-treatment differences were found in weeks 3–5 regardless of nutrient treatment, wherein the fucosterol, 24-methylenecholesterol, and squalene contents of both treatment groups were found to correlate inversely with photosynthetic performance. Factorial treatment of differential nutrient availability and light stress resulted in marked differences between the sterol content of all groups in week 6. Here, squalene and cycloartenol increased in concentration with increasing irradiance regardless of nutrient treatment. Concentrations of all other sterolic components increased with increasing irradiance and low nutrient conditions while decreasing or remaining unchanged with increasing irradiance and high nutrient conditions. Our data shows that within our cultivation conditions and time frame, the sterol content of S. latissima is unaffected by nutrient availability alone but changes with combined alterations in irradiance and nutrient availability. Graphical abstract

Funder

TKI Biobased Economy, Ministry of Economic Affairs

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

Reference72 articles.

1. Akihisa T, Kokke W, Tamura T (1992) Naturally occurring sterols and related compounds from plants. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists' Society, Illinois, pp 172–228

2. Aknin M, Dogbevi K, Samb A, Kornprobst JM, Gaydou EM, Miralles J (1992) Fatty acid and sterol compositions of eight brown algae from the Senegalese coast. Comp Biochem Physiol 102B:841–843

3. Anding C, Brandt RD, Ourisson G (1971) Sterol biosynthesis in Euglena gracilis Z. Sterol precursors in light-grown and dark-grown Euglena gracilis Z. Eur J Biochem 24:259–263

4. Beardall J, Raven JA (2012) Algal metabolism. eLS:1–8

5. Black W (1954) Concentration gradients and their significance in Laminaria saccharina (L.) Lamour. J Mar Biol Assoc UK 33:49–60

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3