Abstract
AbstractSeaweed phytosterols are associated with potential health benefits, affording them and the seaweeds that produce them commercial interest. However, little is known about how their production is affected by the cultivation environment, limiting the efficiency with which these compounds can be exploited. Therefore, we performed a pilot study on the effect of nutrient availability and light stress on the sterol content of Saccharina latissima, a rapid growing brown alga of increasing interest in western mariculture. Individuals of S. latissima were subjected to a nutrient-replete and nutrient-depleted regime for 5 weeks, followed by the introduction of light-limited and light-saturated conditions in the sixth week; sampling occurred each week. No significant inter-treatment differences were found in the sterol content in week 1–5. However, significant intra-treatment differences were found in weeks 3–5 regardless of nutrient treatment, wherein the fucosterol, 24-methylenecholesterol, and squalene contents of both treatment groups were found to correlate inversely with photosynthetic performance. Factorial treatment of differential nutrient availability and light stress resulted in marked differences between the sterol content of all groups in week 6. Here, squalene and cycloartenol increased in concentration with increasing irradiance regardless of nutrient treatment. Concentrations of all other sterolic components increased with increasing irradiance and low nutrient conditions while decreasing or remaining unchanged with increasing irradiance and high nutrient conditions. Our data shows that within our cultivation conditions and time frame, the sterol content of S. latissima is unaffected by nutrient availability alone but changes with combined alterations in irradiance and nutrient availability.
Graphical abstract
Funder
TKI Biobased Economy, Ministry of Economic Affairs
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Aquatic Science
Reference72 articles.
1. Akihisa T, Kokke W, Tamura T (1992) Naturally occurring sterols and related compounds from plants. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists' Society, Illinois, pp 172–228
2. Aknin M, Dogbevi K, Samb A, Kornprobst JM, Gaydou EM, Miralles J (1992) Fatty acid and sterol compositions of eight brown algae from the Senegalese coast. Comp Biochem Physiol 102B:841–843
3. Anding C, Brandt RD, Ourisson G (1971) Sterol biosynthesis in Euglena gracilis Z. Sterol precursors in light-grown and dark-grown Euglena gracilis Z. Eur J Biochem 24:259–263
4. Beardall J, Raven JA (2012) Algal metabolism. eLS:1–8
5. Black W (1954) Concentration gradients and their significance in Laminaria saccharina (L.) Lamour. J Mar Biol Assoc UK 33:49–60
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献