Botryococcus braunii reduces algal grazing losses to Daphnia and Poterioochromonas through both chemical and physical interference

Author:

Thomas Patrick K.ORCID,Arn Finn J.ORCID,Freiermuth MichaORCID,Narwani AnitaORCID

Abstract

AbstractCrop protection from algal grazers is a key area of concern, as grazing zooplankton and flagellates can decimate microalgae crops and impede economic viability of cultivation for biofuels and bioproducts. Inhibition of grazing by chemical and physical interference is one promising solution; however, there have been few empirical tests of this approach that use defense traits innate to algal crop species. Botryococcus braunii is of particular interest because a) it excretes high levels of hydrocarbons and exopolysaccharides and b) forms colonies and possesses chemical defenses. Here we conduct a controlled laboratory experiment to test whether B. braunii can mitigate losses to grazing by two distinct grazers, Daphnia magna and Poterioochromonas malhamensis, due to both chemical inhibition and physical interference linked to large/inedible colonies. We show that chemical and physical defenses interactively reduce the total effect of grazing, thus significantly increasing the biomass and growth rates of cultures of B. braunii and Nannochloropsis limnetica when either grazer is present. We also find that B. braunii medium enhances the growth of N. limnetica. Our study demonstrates how community engineering can identify synergies arising from algal co-cultivation (e.g., by using industrially relevant strains for crop protection). While our lab study serves as a proof-of-concept, future research should test this strategy at pilot scale; if successful, such ecological discoveries may help to reduce the costs of large-scale deployment of algal cultivation for sustainable foods, fuels, bioproducts (e.g., bioplastics), and carbon capture.

Funder

Eidgenössische Anstalt für Wasserversorgung Abwasserreinigung und Gewässerschutz

Eawag - Swiss Federal Institute of Aquatic Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3