Organic carbon utilisation by the filamentous alga Tribonema

Author:

Liu Jiajun,Crosbie Nicholas D.,Scales Peter J.,Martin Gregory J. O.

Abstract

AbstractFilamentous algae have potential application to wastewater treatment, in particular for efficient recovery of nutrients into biomass. However, supplying inorganic carbon is a major limiting factor. The utilisation of organic carbon present in wastewater may reduce the constraints in carbon supply, however there is little knowledge of mixotrophic growth amongst filamentous algae. This study investigated the utilisation of organic carbon sources relevant to wastewater by the filamentous xanthophyte alga Tribonema. Algae growth was compared in the absence of organic carbon (autotrophic) and in presence of 0.2 g-C L-1 glucose, ethanol or acetate under mixotrophic (presence of organic carbon and light) or heterotrophic (presence of organic carbon and absence of light) conditions. To investigate direct utilisation of organic carbon and indirect utilisation via bacterial CO2-genesis, cultivation was performed under both axenic and non-axenic conditions. Tribonema was found to directly utilise glucose, which increased mixotrophic productivity and maintained growth under heterotrophic conditions. In contrast, acetate was only indirectly utilised mixotrophically in the presence of bacteria, whereas ethanol was not utilised under any conditions. The underlying mechanisms of glucose utilisation by Tribonema were also investigated by analysing its photosynthetic rate and respiration rate under glucose concentrations ranging from 0 – 100 g L-1. Based on the results, enhancements to metabolic pathways and reduced CO2 requirements provided by glucose utilisation were proposed. Despite the positive results with respect to glucose utilisation, out competition for this resource by bacteria suggest that Tribonema is more suitable for treatment of wastewater with low organic carbon concentrations, such as secondary-treated wastewater effluent.

Funder

Melbourne Water

Australian Research Council

University of Melbourne

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3