Differential gene expression in a subpopulation of Phaeodactylum tricornutum with enhanced growth and carotenoid production after FACS-mediated selection

Author:

Macdonald Miller Sean,Herdean Andrei,Gupta Vishal,Signal Brandon,Abbriano Raffaela M.,Ralph Peter J.,Pernice Mathieu

Abstract

AbstractFluorescence-Activated Cell Sorting (FACS) is a powerful method with many applications in microalgal research, especially for screening and selection of cells with improved phenotypes. However, the technology requires review of gene expression changes responsible for enhanced phenotypes in sorted populations. Phaeodactylum tricornutum cells were sorted using FACS with excitation/emission parameters targeted to favouring the industrially-relevant carotenoid fucoxanthin. The resulting cultures showed significantly higher growth rate (1.10 ×), biomass (1.30 ×), chlorophyll a levels (1.22 ×) and fucoxanthin content (1.28 ×) relative to the wild-type strain. RNA-seq was used to elucidate the underlying molecular-level regulatory changes associated with these traits and represents the first study do so on FACS-sorted microalgal cultures. Transcriptome analysis corroborated evidence of increased chlorophyll a and fucoxanthin, showing enrichment for the genes/pathways for tetrapyrrole biosynthesis and for suites of genes directly related to photosynthesis. Only three genes were upregulated in the MEP (non-mevalonate) pathway to carotenoid biosynthesis pathway, suggesting either a strong influence of IDI, CRTISO5 and ZEP1 on fucoxanthin biosynthesis or a post-transcriptional or post-translational mechanism for the observed increase in fucoxanthin content.

Funder

Department of Education, Australian Governement

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3