Abstract
AbstractThe aim of this paper is to investigate the behaviour of projective images of the groups which are finite over a term of their upper central series. In particular, we prove that for any positive integer k, the class of finitely generated groups in which the k-th term of the upper central series has finite index can be described in terms of lattice invariants, and so it is invariant under projectivities. In this context, we also study groups that have only finitely many maximal subgroups which are not permodular.
Funder
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Reference11 articles.
1. Baer, R.: Endlichkeitskriterien für Kommutatorgruppen. Math. Ann. 124, 161–177 (1952)
2. Busetto, G.: Proprietà di immersione dei sottogruppi modulari localmente ciclici nei gruppi. Rend. Sem. Mat. Univ. Padova 63, 269–284 (1980)
3. De Falco, M., de Giovanni, F., Musella, C.: The Schur property for subgroup lattices of groups. Arch. Math. (Basel) 91, 97–105 (2008)
4. Hall, P.: Finite-by-nilpotent groups. Proc. Cambridge Philos. Soc. 52, 611–616 (1956)
5. Hekster, N.S.: On the structure of $$n$$-isoclinism classes of groups. J. Pure Appl. Algebra 40, 63–85 (1986)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献